
Random and Guided Edge Perturbations for
Improved Learning on Graphs

Alex Derhacobian
Department of Computer Science

Stanford University
alexder@stanford.edu

Edward Vendrow
Department of Computer Science

Stanford University
evendrow@stanford.edu

Abstract

Deep graph neural networks have enabled state-of-the-art performance in graph
prediction tasks such as node property prediction. However, these models tend to
have many parameters which risks over-fitting, especially when the dataset size is
small relative to the parameter size. Graph data may also be noisy with missing
or incorrect edges, which may further degrade performance. In this paper we
present an exploration of DropEdge, a proposed technique for addressing these
issues. Our results confirm the effectiveness of dropping random edges for training
deep learning models on graphs. DropEdge applied to GraphSage outperforms the
current Open Graph Dataset (OGB) Leaderboard benchmark for GraphSage on the
ogbn-proteins dataset. Additionally, we propose a novel variation to DropEdge.
Our variation consists of using a link predictor to generate edge probabilities and
strategically adding and dropping edges from the input graph. This augmented
input graph is then used as a noisy input for a downstream node classification task.

1 Introduction

Introduced by Kipf & Welling [1], the deep Graph Convolutional Network (GCN) and related
works have achieved success in applying convolutional methods to graph-based data[2][3][4][5].
Building on the success of convolutional architectures in computer vision, GCNs similarly perform
convolutions on graph data by repeatedly transforming and aggregating information from adjacent
nodes.

Deep graph neural networks have enabled state-of-the-art performance in graph prediction tasks
such as node property prediction. However, these models tend to have many parameters which risks
over-fitting, especially when the dataset size is small relative to the parameter size. Additionally,
graph data may be noisy with missing or incorrect edges. Fitting a model to these incorrect edges may
further degrade performance. Deep graph convolutional networks further suffer from over-smoothing,
a pheonmenon during which nodes will gather representations of an increasingly large number of
nodes, leading to indistinct node embeddings and poor performance. Preventing over-smoothing in
graph-based learning has recently been an area of focus for researchers [6][7][8].

One proposal to address these problems is DropEdge [6], which aims to solve the problems of
over-fitting and over-smoothing by randomly removing edges from the input graph during training.
This idea is inspired by the dropout regularization method in classic neural networks. DropEdge
can be applied to entire graphs or to single layers, and both variations have been shown decrease
over-fitting and over-smooothing. DropEdge is particularly notable because the method is simple to
implement and can be used with nearly any existing GCN.

Final Project, CS224w (Winter 2021)

2 Background

2.1 OGB Datasets

We will be using the OGB ogbn-proteins dataset [9]. This dataset represents biologically meaningful
associations between proteins, including physical interactions, co-expression, or homology. This
dataset is a good candidate for random edge dropping techniques because protein interaction graphs
tend to be generally fairly noisy with many false positives [10]. Previous work has been done in
de-noising protein-protein interactions, so we believe that this will provide the optimal conditions to
test our method’s ability to make a model more robust to noise.[11][12] The results presented in this
paper will be based on performance on this dataset.

2.2 GCNs and Deep GCNs

Although residual connections have enabled CNNs to achieve state-of-the-art performance in com-
puter vision tasks, creating deep GCNs has proven more challenging. Kipf & Welling attempt to
build a deep (i.e. > 3 layer) GCN using such residual connections, but find that the performance
decreases rather than improves.

Deep graph convolutional networks further suffer from over-smoothing, where many-layered networks
will pool representations of an increasingly large k-hop neighborhood. In the extreme, this will push
the representations of all nodes to a single fixed value, resulting in poor performance. Oono & Suzuki
[13] extended this idea by proving theoretically that in the limit of infinite layers, GCNs suffer from
information loss resulting from node features exponentially converging to a small subspace. More
formally, over-smoothing occurs when after some hidden layer L, the distance between the input
matrix and subspaceM is bounded below by some ε such that namely, dM(H(`)) <,∀` ≥ L

3 Motivation

The motivation behind perturbing the edge set of the input graph is the well known dropout method
developed by Hinton et. al.[14]. Dropout aims to reduce over-fitting and increase model robustness
by randomly zero-ing out feature dimensions. Edge perturbation methods like DropEdge are similarly
motivated. These methods act as a data augmentation method as well as a method to prevent
over-fitting. Unlike dropout, edge perturbations also reduces over-smoothing[6].

4 Methods

Figure 1: This diagram illustrates our variations on the DropEdge method of edge perturbation.
Inspired by Zhao et. al. [15], we train a link predictor on the original graph. Then, using the edge
probabilities of input edges that are generated by the link predictor, we strategically add and drop
edges from the input graph. This method acts as a data augmentation method for graph-structured
data by producing realistic synthetic input graphs for the node classification task.

2

Model Standard Single Drop DropEdge

GCN, 3-layer 77.16 77.29 77.91 ∗
GCN, 8-layer 78.47 77.63 79.40∗

GraphSage, 3-layer 83.45 83.46 83.38∗
GraphSage, 8-layer 84.05 84.16 84.32∗

MLP, 3-layer 76.82 77.73 78.01∗
MLP, 8-layer 77.75 77.68 78.21∗

Table 1: Validation accuracies across different model architectures for the regular model, random edge
dropping before training, and random edge dropping every epoch (DropEdge). Drop probabilityes
are p = 0.2. *: Outperforms OGB leaderboard benchmark for same model architecture

The methods we explore are based on the idea of random edge-dropping presented by DropEdge.
Additionally, we propose variations to DropEdge inspired by Zhao et. al.[15]. In our variation, we use
a link predictor to generate a sparse predictive adjacency matrix Apred that guides edge perturbations
of the input graph.

4.1 DropEdge

At each iteration, DropEdge randomly selects some Vp number of edges to drop. Mathematically,
this means that beginning with adjacency matrix A we obtain matrix Adrop such that

Adrop = A−A′ ,

where A′ is a sparse matrix containing exactly Vp nonzero elements selected from A. The number of
nonzero elements selected is determined by a new hyperparameter defined as the drop rate, p. As
suggested by Kipf & Welling (2017), the re-normalization trick is applied to the modified adjacency
matrix to obtain Âdrop, which is then used in training [1]. Here is an example of DropEdge in action.
Consider some adjacency matrix A of a directed graph G as defined below and a drop-rate p = 1/3:

A =

[
1 0 1
0 1 1
1 1 0

]
, A′ =

[
0 0 0
0 0 1
0 1 0

]
Adrop = A−A′ =

[
1 0 1
0 1 0
1 0 0

]

DropEdge can also be performed at each layer of the graph, so that at each layer (`) in the GCN,
there is a unique adjacency matrix Â(`)

drop. The layer-wise DropEdge will add more randomness than
the graph-wise approach. By producing various perturbations of the input graph, DropEdge acts as a
form of data augmentation. DropEdge also minimizes over-smoothing. DropEdge increases the ε-
smoothing layer L, thus reducing over-smoothing. In experiments, DropEdge improves performance
on popular GCNs like GCN, ResGCN, JKNet, IncepGCN, and GraphSAGE.

4.2 Guided Edge Dropping

DropEdge can be seen as a data augmentation technique, where the random edge dropping generates
many noisy or deformed versions of the original graph. While this augmentation is useful, it is
done at random and without consideration for the graph architecture. This may be important in
graphs where some types of connections may be noisy, but others are not noisy and are important for
proper message passing. Based on this intuition, we propose an edge dropping scheme which uses a
previously trained link prediction model to drop edges based on edge probabilities (ie. the probability
that there exists an edge between some nodes i and j). Formally, given an adjacency matrix A and
link prediction modelM, we define the predicted matrix A as:

Apred
ij =

{
0 if Aij = 0

P(Aij = 1 | M) if Aij = 1

Intuitively this matrix wil give high scores to links that are essential to the graph, and low scores to
noisy and incorrect links. Since we only need to compute the probability matrix Apred for already

3

existing edges, this matrix is not prohibitively expensive to compute, especially for sparse graphs. In
the case where it is computationally feasible to calculate the edge probabilities for every possible
edge in the graph, then we could calculate P (Aij = 1) for every edge (i, j) in the matrix and then
strategically add or drop edges from the graph. An example of this is implemented by Zhao et. al.
[15], where randomized and guided edge perturbations are added to create noise during training. In
this training scheme, a pretrained model is used to find the edge probabilities for the entire graph
or some subgraph. Then, the bottom i|E| edges with lowest edge probabilities are dropped from the
graph, and the top j|E| non-edges with the highest edge probabilities are added to the graph. i and j
are hyperparameters that control the number of edges that are added and dropped from the graph, and
|E| is the total number of edges in the graph or subgraph.

Using this graph and an edge drop probability p, we compute the final adjacency matrix used for
training:

A′ij = 1
{
αAij + (1− α)Apred

ij > p
}

Note that we also include a parameter α which allows controllability over the level of randomness
used to determine the final dropped matrix.

4.3 Implementation Details

Since DropEdge acts as a general improvement over existing models, we base our code off of
the benchmark models provided by the OGB team. In particular, we implement DropEdge and
Guided Edge Dropping functionality into the GCN, GraphSage, and MLP networks for node property
prediction on ogbn-proteins.

5 Experiments

We contribute to the understanding of the performance of DropEdge and related methods across
various metrics and modifications. We perform experiments with three model architectures: Graph-
Sage, Graph Convolutional Network (GCN), and a standard Multilayer Perception (MLP) with 3
hidden layers and 256 weights in each hidden layer. For all the models, we used a standard binary
cross-entropy loss. The task of interest is node classification. All nodes in the ogbn-proteins have
feature labels of length 112, where each feature label is a binary label. Since this is a multilabel
binary classification problem, we used a binary cross-entropy loss for multiple categories.

L(x, y) = {`1, . . . , `N}T , `n = −wn[yn · log(σ(xn) + (1− yn) · log(1− σ(xn))] (1)

where N is the batch size. Since there were 112 binary classification tasks for each node, we
calculated this loss for all 112 classes.

Our experiments confirm that DropEdge is an improvement over baseline models. Most
importantly, GraphSage with DropEdge shows performace improvements over the current OGB
Leaderboard baseline for GraphSage applied to the ogbn-proteins dataset. We also investigate
variations on the DropEdge method and its improvements to training. We propose improvements to
the DropEdge method using a trained link predictor to guide the removal and addition of edges to the
input graph fed to the node classifier.

Due to the effectiveness of random edge dropping, we propose a contribution to the DeepSnap library.
Our contribution is an implementation of random edge dropping on a sparse adjacency matrix. The
user can specify the drop probability in our implementation.

5.1 Deep Model Training

One important advantage of random edge dropping is that it enables the training of deeper models
which may otherwise overfit on the training data. We test this empirically. First, we trained baseline
models without any edge dropping or adding. Next, we trained all three models with a single round
of edge dropping at the beginning of training. Since drop probabilities of p = 0.2 proved to be the
most effective, we used this drop probability for this round of experiments. Finally, we trained all
three models with a round of edge dropping at the beginning of every epoch of training. Our results

4

Model p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8

GraphSage, 3-layer 83.29 83.46 83.53 83.15 83.45 83.40 83.31 83.32
MLP, 3-layer 76.89 77.95 77.84 77.69 78.21 77.66 76.52 76.27

Table 2: Highest validation accuracies for GraphSage 3-layer, and MLP 3-layer architectures across
different dropout rates.

(see Table 1) showed performance improvements when edges were dropped with probability p = 0.2
at every epoch of training.

Notably, the result achieved by GraphSage with DropEdge is not only better than the baseline model,
but it also outperforms the GraphSage model on the OGB Leaderboard for the ogbn-proteins dataset
(see Table 1).

5.2 Early Training Stability

We find that using DropEdge significantly stabilizes and improves the early stages of training. We
found that DropEdge leads to higher validation, test, and train accuracy earlier on in training. In
our experiments, we log the validation, test, and training accuracies of an MLP model for node
classification with DropEdge and without DropEdge. Figure 2 shows that during the initial training
epochs, DropEdge accelerates training.

Figure 2: With a drop rate of 0.5, DropEdge shows to significantly speed up training during initial
epochs. The blue plot logs accuracy with a drop rate of 0.5, and the red plot logs accuracy with no
DropEdge. In both experiments, no dropout was applied to the model and the learning rate was 0.01.
These experiments were performed on the MLP model and the ogbn-proteins dataset

5.3 Dependence of Drop Probability

We experiment with the effect that the drop probability hyperparameter has on model training. We
evaluated training, validation, and test accuracy of GraphSage and MLP model architectures with
edge dropping rates from 0.1 to 0.8. We found that a change in the drop rate did not have a significant
impact on the performance of our models. This is because the ogbn-proteins dataset has node features
that are generated based on edge-level features. So even with no edges in the graph, the model will
still be able to learn node labels. Alternatively, in cases where node labels are not directly dependent
on incident edge labels, DropEdge has varying results for different dropping rates.[6] In this case,
with a drop rate of p = 0.8, the model will still be able to learn node labels, but this leads to slower
convergence and more distance between node embeddings in the latent embedding space.

While DropEdge does show improvements in validation accuracy (as seen in Table 2), we
notice that if node features contain edge-level information, variations in drop rate will not
significantly affect model performance.

5

Model Drop Rate Highest Train Highest Valid Final Test

GraphSage, 3-layer p = 0.2 88.10 ± 0.22 83.33 ± 0.18 77.35 ± 0.44
GraphSage, 8-layer p = 0.2 89.106 ±0.27 83.922 ±0.292 77.9725 ±0.87

Table 3: These are the results from guided edge perturbations with GraphSage. We chose to test
guided edge perturbations on GraphSage since it was the best performing model from the models we
tested. The 8-layer GraphSage model with guided edge dropping yields better results than the OGB
Leaderboard.

5.4 Guided Edge Perturbations

We experiment with guided edge perturbations on the input graph for the node classification task.
Our training setup consists of first training a link predictor. This link predictor produces a predictive
sparse adjacency matrix Apred, where Apred

ij = p, p ∈ [0, 1], where p is the probability that there
exists an edge between nodes i and j for all edges (i, j) in the sparse adjacency matrix of the input
graph. As we described above, we use Apred to generate a new input graph for the node classication
task determined by an updated adjacency matrix, which we denote as A′.

A′ij = 1
{
αAij + (1− α)Apred

ij > p
}

We define α as a hyperparameter which controls the level of randomness in the input graph. p is the
drop probability as defined by the DropEdge method.

Figure 1 illustrates the full pipeline of the guided edge perturbation method. The variations
of the training graph to the graph model act as augmentations to the input data. Table 3 shows the
results from training the guided edge perturbations pipeline. We report average validation accuracy,
average test accuracy, and confidence intervals for our guided edge dropping (see Table 3). The
validation and test accuracy for the GraphSage model with 8-layers and guided edge dropping shows
improvements over the GraphSage model on the OGB Leaderboard. Improved model performance
from graph data augmentation methods via edge manipulation in previous works [15] lead us to
believe that our link prediction pipeline could produce even better performance improvements with
further investigation.

6 DeepSnap Contribution

Because of the effectiveness of random edge dropping methods across many types of models, we
believe that this method should be a tool available for anyone to use in graph training. To that
end, we submit a contribution to the Stanford DeepSnap library. Our contribution consists of an
implementation of the random edge dropping on a sparse adjacency matrix. This method supports an
edge dropping probability parameter which can be specified by the user.

The implementation of the method in DeepSnap is available at https://github.com/evendrow/deepsnap.
This addition has been tested to work, and we plan to submit a pull request as a contribution to the
master repository.

7 Conclusion and Future Work

In this paper we have explored DropEdge as a generalized technique to improve training, and
proposed an improvement to drop edges in a more guided way to aid graph training. Using the OGB
dataset ogbn-proteins as a benchmark, we showed that implementing these methods gave statistically
significant performance increases across a range of model architectures and outperformed the baseline
models, especially with deeper models. We expect that future research will explore further related
methods to randomly drop or add edges during training. In particular, we believe that guided random
methods, where learned graph features are used to intelligently modify the graph, will continue to see
success. Such methods will allow for graph models to perform better on noisy data, opening GCNs
to new potential applications.

6

https://github.com/evendrow/deepsnap

8 Contributions

The authors contributed equally to this work.

9 Code

See github.com/evendrow/cs224w_project

References
[1] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,

2017.

[2] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.
arXiv preprint arXiv:1403.6652, 2014.

[3] Zhou Jie, Cui Ganqu, Zhang Zhengyan, Yang Cheng, Liu Zhiyuan, Lifeng Wang, Li Changcheng, and Sun
Maosong. Graph neural networks: A review of methods and applications. arXiv preprint arXiv:1403.6652,
2014.

[4] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216v4, 2018.

[5] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. arXiv preprint
arXiv:1607.00653, 2016.

[6] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolu-
tional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

[7] Zhichao Han Qimai Li and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. n Thirty-Second AAAI Conference on Artificial Intelligence, 2018a.

[8] Fengwen Chen Guodong Long Chengqi Zhang Zonghan Wu, Shirui Pan and Philip S Yu. A comprehensive
survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

[10] Oleksii Kuchaiev, Marija Rašajski, Desmond J Higham, and Nataša Pržulj. Geometric de-noising of
protein-protein interaction networks. PLoS computational biology, 5(8):e1000454, 2009.

[11] Quaid D Morris, Brendan J Frey, and Christopher J Paige. Denoising and untangling graphs using degree
priors. Conference on Neural Information Processing Systems, 2003.

[12] H.-L. Ng D.W. Rice T.O. Yeates E.M. Marcotte, M. Pellegrini and D. Eisenberg. Detecting protein function
and protein-protein interactions from genome sequences. Science, 285.

[13] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification, 2021.

[14] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Im-
proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,
2012.

[15] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data augmentation
for graph neural networks. arXiv preprint arXiv:2006.06830, 2020.

7

	Introduction
	Background
	OGB Datasets
	GCNs and Deep GCNs

	Motivation
	Methods
	DropEdge
	Guided Edge Dropping
	Implementation Details

	Experiments
	Deep Model Training
	Early Training Stability
	Dependence of Drop Probability
	Guided Edge Perturbations

	DeepSnap Contribution
	Conclusion and Future Work
	Contributions
	Code

