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Abstract

Conditional generative adversarial networks (cGANs) are a variation of the GAN
architecture which accepts a class label to condition the generator to generate a
sample of a particular class. While cGANs require labeled data for training, many
public image datasets are unlabelled. To this end, the pseudo-label refinement
process concurrently trains a cGAN and classifier, with each creating data for the
other, allowing for high quality cGAN training with noisy initial labels. Our work
provides a deep analysis of the pseudo-label refinement strategy, meaningfully
quantifying the robustness of the method to different levels and types of label noise.
Furthermore, we improve on previous works by relaxing the requirement of a small
labelled dataset, instead introducing the novel addition of using a one-shot learning
method to create the initial noisy dataset. Combinding one-shot learning with
pseudo-label refinement, we successfully demonstrate conditional GAN training
with just a single labeled example per class. This novel result is an important step
toward training conditional GANs without needing large labelled datasets. All
source code is available at https://github.com/nicolas-aagnes/few-shot-cgan.

1 Introduction

Conditional generative adversarial networks (cGANs) [8] are a variation of the GAN architecture
which accepts a class label so as to condition the generator to generate a sample from the desired class.
cGANs require labeled data to train, but labels are often unavailable: state-of-the-art GANs such as
StyleGAN [5] are often trained on large, unlabeled image datasets such as FFHQ [6], MetFaces [4],
and AFHQ [3]. However, it is often reasonable to find a small, labelled dataset from a similar domain,
which can be used to train a classifier that can then be used to generate pseudo-labels for the target
dataset. This setting is commonly referred to as Unsupervised Domain Adaptation (UDA), whereby a
model is trained to perform well on an unlabelled target domain using labelled data from a source
domain.

A major challenge in UDA is learning from noisy labels that arise from the domain shift between a
target and source dataset. The noisy labels will inevitably have a classification error that is tied to
the classifier accuracy used to generate the pseudo labels, and the distribution, or amount of noisy
labels, may vary between classes in the target dataset. The limited knowledge of the pseudo label
noise distribution is a serious drawback and limitation of UDA, as it is difficult to know a priori if a
training algorithm will perform well due to the uncertainty in the amount of noisy labels and their
distribution.

To this end, we plan to conduct a systematic study of how the amount and distribution of noise levels
affects the training of conditional GANs. Furthermore, we will be exploring a recent method which
iteratively trains a cGAN together with a classifier to generate more accurate pseudo labels over the
course of training. Previous work has found deep neural net classifiers to be robust to noisy labels
[11], and can therefore further improve the accuracy of cGANs if utilized during training.
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Our primary goal is to analyze the limits under which a well performing cGAN can be successfully
trained when subject to noisy labels. We begin by conducting experiments with artificially injected
noise in the training dataset labels to precisely quantify the robustness of the method to label noise.
Afterward, we introduce a novel addition to the method by inferring the initial labels using one-shot
learning models, demonstrating full conditional GAN training using just a single label per class.

Overall, we find unexpected and surprising results that show well performing cGANs can be trained
under extreme conditions. For example, we find that it is possible to train a cGAN on the MNIST
dataset to almost 100% accuracy even though more than 95% of the labels were incorrectly labelled.
The results of our findings may help future researchers and practitioners gauge the amount of accurate
labels that are needed to train well-performing cGANs, which is of particular importance in fields
such as Unsupervised Domain Adaptation and in Meta-Learning, where few-shot models are often
used to generate labels for large, unlabelled datasets.

2 Related Work

In addition to Unsupervised Domain Adaptation, noisy labels also arise from few-shot models that
are used to label an entire dataset given only a few labelled images. The task of few-shot conditional
generation has been studied across types of generative models and different problem setups. Sinha et
al. [12] introduce a diffusion-decoding VAE which can be used with a classifier trained over the latent
space to generate a specific class via rejection sampling. Bartunov et al. [1] introduce the generative
matching network, a new type of generative model, which can be conditioned on additional input
data to generate specified types of data.

Another source of noisy labels which has gained a lot of traction in recent years stems from meta-
learning based approaches. Meta-learning models are trained to quickly adapt to new unseen tasks
by utilizing training algorithms that are optimized for "learning to learn". Recent advancements
such as the MetaOptNet model [7] have shown superb results on many of the most common meta-
learning benchmarks, and can be used to generate pseudo labels for an entire dataset given just a
few labelled images per class. For example, the meta-learning model can be given 20, 5 or even
just 1 labeled image per class to adapt to, and can be utilized to label the rest of the dataset once its
adaptation procedure is complete. These are referred to as 20-shot, 5-shot and 1-shot learning models
respectively.

Our experiments largely build on the work of Morerio et al. [9], who use an iterative process of
pseudo-label generation, cGAN training, and classifier refinement. Their method heavily relies on two
results from previous work: deep learning-based classifiers are robust to uniform noise if trained on
sufficiently large datasets [11], and that cGANs are, to a certain extent, robust to structured noise [11].
By iteratively training the cGAN and classifier together, the classifier is able to filter out the uniform
noise whilst the cGAN dilutes the structured noise. As the noise levels decrease during training both
the classifier and generator benefit from each other and decrease their respective accuracies over the
course of training.

Morerio et al. [9] initially introduced their iterative training procedure as a way of showing that
cGANs can be accurately trained despite structured noisy labels. They test their framework using
UDA between the SVHN, MNIST, and MNIST-M datasets and show promising results. However,
they mention that further analysis of their framework under more extreme circumstances and with
more challenging datasets as an important area of future work. We utilize this framework to push
noisy cGAN training to the limit and explore the boundaries under which it is possible to still train
high-performing cGANs. Lastly, we expand on their framework to improve the accuracy of traning a
cGAN with pseudo-labels generated from few-shot learning models.

3 Problem Statement

As a baseline, we first use the MNIST dataset as a toy dataset for our experiments, such as analysing
the effect of the cGAN’s performance for varying degrees of noise and noise distributions. This
dataset is ideal for initial experimentation since the small size of the data will make experimenting
with training classifiers and cGANs fast and computationally inexpensive. The results from this
dataset will validate our methodology by showing that the pseudo-label refinement method works to
train a good cGAN.
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Figure 1: We progressively improve our cGAN label accuracy by iteratively training the cGAN and a
label classifier. First, a low-accuracy classifier infers labels for the large unlabeled dataset. Second,
the dataset and these pseudolabels are used to train the cGAN, which can now generate more training
data for the classifier. This process is repeated to iteratively improve both models.

We plan to study how robustly this method operates with respect to the quantity and degree of noisy
labels. Fewer labelled data points will mean a worse initial classifier and thus worse pseudo-labels,
making it more difficult for a cGAN to train properly. Although cGANs have been shown to be
somewhat robust to noisy labels, high levels of noise, leading to inaccurate conditional generation,
may prevent the classifier from improving, rendering the method unsuccessful. Furthermore, we
will examine how the method performs with varying degrees of unbalanced noise distribution,
where the noisy labels are not uniformly distributed over classes. Lastly, just how certain CNN
architectures have shown to be more robust than others to noise, we will experiment with different
cGAN architectures to see if some models within this framework are more robust than others for
conditional image generation with noisy labels.

We evaluate our method based on the performance of the cGAN generator and classifier. The classifier
is evaluated on its prediction accuracy and the generator will evaluted on the accuracy of conditional
generation by using an ”oracle” classifier (trained on the full, original, labelled dataset) to determine
if the desired and generated label is the same. It is important to note that at no stage during the
training procedure do we utilize the full set of correct labels, as we only use our artificially created
noisy labels for training the classifier and generator. However, the oracle classifiers which are only
used for evaluating the models are trained on the correct set of labels.

4 Technical Approach

4.1 Overview

The pseudo-label refinement algorithm iteratively updates the generator and classifier using each
other’s output. Specifically, the output from the conditional GAN is used as training data for the
classifier, while unlabeled images with pseudolabels generated by the classifier are used to train the
conditional GAN. Figure 1 shows an illustration of this process. This method requires some initial
noisy pseudolabels for the unlabeled data in order to start the procedure, which come from training
an initial classifier using just a small labeled dataset or a few-shot model.

The generator is updated using the standard, respective cGAN objective, except that the conditioned
classes in the cGAN objective are pseudolabels coming from the classifier C:

minG maxD V (D,G) = Ex∼pdata(x)

[
logD(x|C(x))

]
+Ez∼pz(z)

[
log(1−D(G(z|C(x))|C(x)))

]
The classifier is updated via the standard cross-entropy loss:

L = −
∑c

i=1 yi · log ŷi

Algorithm 1 describes this entire training procedure:
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Algorithm 1: Iterative pseudo-label refinement

Data: Images X , initial noisy labels Ŷ
C ← Classifier pretrained with (X, Ŷ )

G← Conditional GAN pretrained with (X, Ŷ )
for Batch x from X do

y← Pseudo-labels inferred using C(x)
G← Gradient update from x, y
x′, y′ ← Generate from G
C ← Gradient update from x′, y′

end

4.2 Artificial Pseudo Label Training

First, we train an oracle classifier on the original MNIST dataset which we only use to evaluate the
accuracy of the generator. After this step, we inject noise into the labels by randomly relabelling
a certain percentage of the labels. Thus, the original, correct labels are never used from this stage
onwards in the training procedure.

We then seperatively pretrain the classifier and cGAN on the noisy dataset. This is a noteworthy
distinction to the original framework proposed by Morerio et al., as they utilize a classifier originally
pretrained on a source dataset. This separate pretraining step is critical for the algorithm to work
correctly because the classifier is trained on generated data and the generator is trained on labels
from the classifier, so starting with a randomly initialized classifier and generator would result in
non-informative pseudo-labels and noisy images.

After separately pretraining the classifier and cGAN we then iteratively train the two models together
as outlined in the technical approach above. Note that in our setup the models are trained in a joint
stochastic manner, meaning that in the same loop, for the same batch of images, both the classifier
and generator are updated. Thus the classifier and generator are updated together in an online manner,
as opposed to repetitively training the classifier and generator separately for their own set of batches.

4.3 Few-Shot Methods for Initial Pseudo Label Generation

Labeled image data may be rare in real-world settings, so we also explore the use of few-shot methods
to generate the initial labels, where we only need one or a few labeled examples per class. Since the
iterative pseudo-label refinement process is robust to noise, we may use these noisy labels to initialize
the process. We therefore also test our method using a few-shot model to label all of the images in
the MNIST dataset, given only a few labelled images per class.

To generate our pseudo labels we use MetaOptNet [7], a meta-learning optimization based model
which has achieved state of the art results on many of the most common meta-learning benchmarks.
MetaOptNet’s objective is to learn feature embeddings that generlize well under a linear classification
rule for novel categories. Thus, the model is optimized to differentiate between images of unseen
categories by updating a linear classifier which has effectively "learned to learn" how to distinguish
feature embeddings of different classes.

We take a pretrained MetaOptNet model on the tieredImageNet dataset [2] and utilize it to create a
1-shot and 20-shot model for the MNIST dataset. We achieve this by giving the pretrained model
1 example per class to adapt itself to in the 1-shot learning case, and 20 examples per class in the
20-shot case. The entire dataset can then be labelled using the 1-shot and 20-shot models respectively.

5 Results

5.1 Experimental Setup

We run our initial experiments on the MNIST dataset. The cGAN uses a 128-dimensional latent
vector, with a concatenated one-hot class vector representing the digit type, and the classifier is a
simple convolutional neural network featuring two convolutional layers.
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Figure 2: Classifier (left) and conditional generator (right) accuracy on MNIST over the course of
training for varying noise levels. We first independently pre-train each network for 2,000 steps, then
begin the pseudo-label refinement process. The generator is evaluated using an "oracle" classifier.
We observe that this process significantly improves both the generator and classifier performance
across noise levels, even recovering from 95% label noise.

In order to accurately evaluate the robustness of our method to different levels of noise, we generate
the initial pseudolabels by randomly changing some proportion of training labels. This replicates the
effect of having labeled the target distribution with a classifier trained on a source distribution.

We begin by training the classifier and generator independently for 5 epochs (or approximately 2,000
steps) on the noisy data. Afterward, we perform the pseudo-label refinement process where the
classifier and generator each create data to train the other. We perform this process for another 5
epochs (or approximately another 2,000 steps). Every 25 step we log the classifier and generator
accuracy.

5.2 Robustness to Noise

We evaluate the performance of the pseudo-label refinement method across a variety of initial label
noise levels from 0% to 99%, where the noise level denotes the proportion of labels that are assigned
random values by a random uniform distribution. This experiment aims to show how the model
recovers from high initial noise levels. We evaluate both the classifier accuracy and generated label
accuracy as the model trains.

Figure 2 shows the accuracy of the classifier and generated labels over the course of training. We
first pre-train each model independently for 2,000 steps on the noisy dataset, then begin pseudo-label
refinement. We observe that at the end of pre-training, the cGAN accuracy approximately matches
the data noise level, while the classifier accuracy is generally higher. After beginning pseudo-label
refinement, all generators markedly improve, with most converging to near perfect accuracy. However,
extremely high noise levels (in this case, above 0.95) prevent optimal convergence as expected. This
result showcases the robustness of our method to label noise, and also suggests that the classifier’s
robustness to noise is crucial to optimal convergence.

5.3 Label Noise Distribution

Classification performance depends on the ability of the classifier to distinguish between similar
images with different class labels. Since classification accuracy is crucial for pseudo-label refinement,
we evaluate this method for different noise distributions, and we use entropy as our measure of how
unevenly the noisy labels are distributed amongst classes. For our experiment we fix the noise level at
0.97, since at this value the pseudo-label refinement process improves accuracy but does not converge
optimally. Figure 3 shows classifier and generator performance at different entropy levels. There is
not an obvious correlation between entropy and performance, suggesting that the actual placement of
noisy labels is important. For example, 1s and 5s are easy to tell apart while 1s and 7s are harder, so
label noise between more similar images may more significantly affect performance. The proceeding
experiment with few-shot labels reinforces this idea.
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Figure 3: Classifier (left) and conditional generator (right) accuracy on MNIST over the course of
training, with pseudo-label refinement beginning 2k steps in, at different noise entropies. We fix the
noise level at 0.97, since at this value the pseudo-label refinement process improves accuracy but
does not converge optimally. There is not obvious correlation between entropy and performance,
suggesting that the placement of noisy labels is important (i.e. 1s and 5s are easy to tell apart, but not
1s and 7s)

.

Figure 4: We try 1-shot and 20-shot learning to label the training set. The "known" examples used
are chosen randomly and pictured above (a subset for 20-shot), along with the confusion matrices of
training set labels for 1-shot (left) and 20-shot (right) prediction. The 1-shot prediction achieves an
accuracy of 42.93%, while 5-shot prediction achieves an accuracy of 59.78%.

5.4 Few-Shot Initial Label Generation

While the previous experiments used artificial label noise to precisely control noise level, we now
demonstrate the use of few-shot learning to infer the initial labels with as low as a single example per
class.

We experiment with both 1-shot and 20-shot learning. We randomly select 1 or 20 digits per class,
respectively, and use the few-shot method to label the entire training dataset. We then use these noisy
labels to proceed with iterative pseudo-label refinement. Figure 4 shows the few-shot examples used
to label the data, as well as the confusion matrix of the training set labels. The confusion matrix
reveals that specific digit pairs are harder to tell apart. For instance, there is a high level of confusion
for the pairs (3,5), (1,7), and (5,9), which makes sense given the perceptual similarities in these digits.
Using just this few-shot prediction method, the 1-shot prediction achieves an accuracy of 42.93%,
while 5-shot prediction achieves an accuracy of 59.78% in labelling the training set before proceeding
with pseudo-label refinement.

Figure 5 shows the accuracy curve for pseudo-label refinement for the 1-shot and 20-shot method.
We observe that both trials achieve a final classifier and generator accuracy near 88%, improving
significantly over the initial label accuracy generated by the few-shot learning method.

5.5 Discussion

Our results show the impressive robustness of iterative pseudo-label refinement to large amounts of
noise, enabling us to train an accurate conditional GAN with as low as a single example per class
with the use of few-shot learning methods.

6



Figure 5: Classifier (left) and generator (right) accuracy with initial labels generated using 1-shot and
20-shot learning, with pseudo-label refinement beginning 2k steps in. We observe that both trials
reach a high level of accuracy, with a final classifier and generator accuracies both near 88%.

.

We observe from Figures 2 and 3 that while the generated label accuracy will tend to approximate the
noise in the labeled data, the classification accuracy remains high even in the initial stages when label
noise is significant. Recent work on evaluating the robustness of deep neural networks to label noise
[10] supports this result, showing that classifiers generally have an impressive robustness to uniform
label noise. This result suggests that while the cGAN itself may not be robust to label noise, the high
quantity of samples it generates to train the classifier are important to improve classification accuracy,
and thus conditional GAN label accuracy after finetuning. At the same time, the robustness of the
classifier to noise provides high quality image-label pairs to train the cGAN.

In Figure 2 we also observe a small, temporary drop in classifier accuracy right at the start of the
pseudo-label refinement stage (at 2,000 steps, approximately halfway through the training process).
This drop corresponds to when the classifier begins training using just data generated by the cGAN.
At this stage the cGAN generates data with about the same noise level as the initial noisy labels, but
perhaps with a slightly lower image quality, thus providing worse quality data to traing the classifier.
This then leads to a slight drop in classifier performance until the cGAN accuracy begins to increase.

Our novel use of a few-shot label to provide the initial noisy labels further develops this method
by allowing for conditional GAN training with as low as 1 example per class. Figures 4 and 5
show that using few-shot methods provides a good starting point to train high-quality conditional
generative models. While the final accuracy (near 88%) is not perfect, we believe that it is a significant
achievement given that we are provided just a single example per class. Furthermore, we believe that
using better few-shot learning methods will even further improve this accuracy beyond the current
capability, possibly achieving near-perfect performance as with our other experiments.

6 Conclusion

Our work provides a deep analysis of the pseudo-label refinement strategy, meaningfully quantifying
the robustness of the method to different levels and types of label noise. Furthermore, we improve
on previous works by relaxing the requirement of a small labelled dataset [9], demonstrating that
using pseudo-label refinement together with few-shot learning methods allows conditional GAN to
be trained with as little as a single example per class. We believe that this novel result is an important
step toward training conditional GANs without needing large labelled datasets.

7 Future work

Our progress up to this point has shown the effectiveness of this method on a toy dataset, including
robustness to varying noise levels and dataset sizes. Now we plan to apply the method to more
complex datasets, as well as extend the method with ideas from representation learning.

After validating out method on the MNIST dataset, we will now move on to larger and more complex
data distributions. We plan to use the CelebA dataset, which features over 200k face images with 40
attribute labels. The high number of attributes will make the task of conditional generation difficult
in general, so by showing that we are able to robustly train a cGAN with noisy attribute labels, we
will show how our method works even in difficult scenarios. We additionally plan to evaluate the
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generated image quality using standard metrics such as Fréechet Inception Distance and Learned
Perceptual Image Patch Similarity (LPIPS) [13].

8 Additional Information

Both authors contributed equally to this project, sharing an equal workload for running experiments
and writing the final report.

This project is not being supported by a lab and it is not being shared with other AI classes at Stanford.
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